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SVI Toolkit - Exercise 2 
Explore Spatial Autocorrelation with the SVI 

Learning Objectives: 
1. Subset geographic data in R 
2. Explore the spatial autocorrelation of the Social Vulnerability Index using the spdep package 

in R 
3. Create maps showing spatial autocorrelation within the Social Vulnerability Index 

Important note for this exercise: 
This exercise is intended for people who have some familiarity of geospatial mapping and spatial 
concepts such as spatial autocorrelation. This exercise is not intended as a teaching tool for spatial 
concepts, but rather a way to use the SVI to apply these spatial concepts. Users of this exercise are 
encouraged to have prior foundational knowledge of geospatial mapping and spatial epidemiology 
before completing this exercise.  

Defining Spatial Autocorrelation: 
For this exercise, we are going to run some basic spatial models and explore the concept of spatial 
autocorrelation using the spdep package. For assistance using basic mapping in R, please see SVI 
Academic Toolkit Exercise 1.  

Spatial autocorrelation indicates the occurrence of systematic spatial variability in the mapped 
variable of interest. In other words, it describes the degree to which a spatial variable (e.g., the SVI) is 
correlated with itself through space and the strength of this association (Gangodagamage et al, 
2008). For example, areas that are ranked as having high social vulnerability may be geographically 
clustered nearby other areas that are similarly ranked as having high social vulnerability. The scale of 
the measurement of autocorrelation can be global (measured over the entire study area) or local 
(measured at specific locations) (Mendez, 2020). Spatial autocorrelation can be either positive or 
negative, with values between -1 to 1. If the autocorrelation is close to 1, this would mean the area is 
very tightly clustered with all geographic units being near each other having very similar values (e.g., 
high SVI areas are near high SVI areas). A “-1” would mean all geographic units are perfectly 
distributed with no similar values near each other (e.g., high SVI areas are near low SVI areas).  

The concept of spatial autocorrelation in the context of area-level data is relevant to spatial 
epidemiology because it can indicate likely patterns that can be explained by the presence of a 
another variable or determinant, measurement error, spillover effects, issues with the statistical 
model, interaction, or other forces of dispersion (Agovino et al, 2018). We can quantify spatial 
autocorrelation using statistics such as Moran’s I, used for area-level or aggregated spatial data. 
Point pattern or geostatistical data have other corresponding statistics to measure autocorrelation, but 
we will demonstrate using Moran’s I later in this exercise. Further, we can also categorize spatial 
autocorrelation in several ways.  

The concept of spatial autocorrelation is relevant to spatial epidemiology because it is a clue that 
there is likely a pattern in the data that can be explained by the presence of measurement error, 
spillover effects, issues with the statistical model, interaction, or other forces of dispersion. We can 
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quantify spatial autocorrelation using statistics such as Moran’s I and will demonstrate later in this 
exercise. Further, we can also categorize spatial autocorrelation in several ways:  
 

• Spatial Dependence - the values of a variable in one location influence or are influenced by 
nearby values. This creates clusters and patterns within the spatial data. 

• Spatial Independence - the values of a variable in one location are not related to the values of 
other locations and there are no spatial or geographic patterns in the data. 

• Negative Spatial Autocorrelation - geographies (e.g., counties, census tracts, etc.) that are 
near to each other have very different or contrasting values, are usually negatively spatially 
correlated, and correlation values will be below zero.  

• Positive Spatial Autocorrelation - geographies near to each other with more similar values 
rather than different are generally positively spatially correlated and correlation values will be 
above zero.  

• No spatial autocorrelation - there is no pattern of values across geographies close to each 
other and the correlation value is zero. 

 
As noted at the start of this exercise, it is important to have prior knowledge of the concept of spatial 
autocorrelation to help interpret findings. For more information on spatial autocorrelation, we have 
provided several references at the end of this document.   
 
 

Part 1: Getting Started  
 
Create a designated folder for your data files. 
Download your files. Download the exercise and the “SVI_2024_analytic.RDS” file. Save these 
files in a folder on your computer’s desktop named “SVI Project”. Be sure that this folder is located 
on your local computer’s drive and not on any type of cloud service to avoid issues with loading your 
data and saving your files. This is the folder you will set as your working directory for each of these 
exercises. 
 
Set up your working directory. 
#Here is an example of how your code may look. NOTE: you must make sure all of the "\"    
#symbols are converted to "/" if you copy and paste your file path from your computer.     
 
#This is especially important for PC users.  
 
#Problem: Uh oh! This one won't run! Check direction of slashes. 
  setwd("C:\Users\janedoe\Desktop\SVI Project") 
 
#Solution: 
  setwd("C:/Users/janedoe/Desktop/SVI Project") 
 
#Now you try! 
 setwd("Your file path here") 

 
Load your R packages. 
R Packages are containers for collections of R code that have a specific purpose or use. Many R 
packages are available and the ones you use will depend on what you are working on in R. 
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TIPS: 
1. You only need to install packages once after downloading R and RStudio, but you do need to 

load them each time you use RStudio with the “library()” function.  

• To install the packages, run the first block of code below.  

• If you have installed the packages previously and only need to load them, run the 
second block of code below. 

2. When you update R and RStudio on your computer, you will need to install your packages 
again. 

3. Type >?nameofthepackage in the console to see a description and key information about the 

functions of the packages. 
 

For this exercise, we will need the following packages: 
 

#Use the code below to install the packages you need for this exercise.  
#You only need to perform this task once after installing or updating R and RStudio. 
install.packages("tidyverse") 
install.packages("sf") 
install.packages("tmap") 
install.packages("tmaptools") 
install.packages("RColorBrewer") 
install.packages("spdep") 
install.packages("rgeos") 
install.packages("spgwr") 
install.packages("gridExtra") 
install.packages("rio") 
install.packages("bispdep") 
install.packages("rgeoda") 
 

Use the code below to load each of the packages you need for this exercise. You need to 
perform this task each time you use R and RStudio. 
library(tidyverse) 
library(sf) 
library(tigris) 
library(tmap) 
library(tmaptools) 
library(RColorBrewer) 
library(spdep) 
library(spdep) 
library(rgeos) 
library(gridExtra) 
library(rio) 
library(bispdep) 
library(rgeoda) 
 

Load your datasets into your R environment. 
data <- readRDS(file = "SVI_2024_analytic_file.RDS") 
 
#You can type in your state of interest in the quotation marks of the code below to 
subset your state of interest from the entire United States dataset. Make sure that you 
write the full name of the state and spell it correctly with sentence case 
capitalization. For Washington D.C., write "District of Columbia". 
 

#For this exercise, we will be using Georgia as an example. 
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my_state <- data[data$STATE==" Georgia",] 
 
#This created a new dataset called “my_state” that only contains records within Georgia. 
#Use the head function to check that your state of choice is listed in the STATE column. 
 
head(my_state)  
 
 
#Next, we will clean our dataset. First, subset a specific county of interest from the 
my_state dataset that you have created. We will also take the variable "depression" out 
of the data frame since we do not need it for this exercise, and we do not want missing 
values for the depression variable to impact our analysis. To finish our data cleaning, 
we will omit any observations with missing values so our subsequent code functions. Then, 
use the head function to confirm that the dataset columns correspond to your state and 
county of interest. 
 
my_county <- my_state[my_state$COUNTY==" Fulton",] 
my_county <- my_county %>% 
                select(-c(depression)) 
my_county <- na.omit(my_county) #This code removes missing polygons 
head(my_county)  
 

 
 

Part 2: Defining Neighbors  
 
Next, we need to define neighboring observations as polygons with assigned values. This means that 
we need to tell R which geographies (counties, census tracts) are next to each other.  
 
First, we will be determining which polygons neighbor each other using contiguity. 
 
Contiguity is a method to define neighbors based on sharing a border or boundary. Similar to the 
pieces of a chess game, the Queen's contiguity method assigns neighbors by using both the edges 
and corners of the boundary. The Rook contiguity method assigns neighbors using only the shared 
boundary edges. Identifying where geographies share boundaries is important because they are 
places where there may be connections of spillover effects between neighboring populations. As an 
example of spill over in the context of the SVI, if an area with low social vulnerability attracts new 
businesses and investments, neighboring counties or census tracts might also indirectly experience 
economic benefits such as increase job opportunities or improved infrastructure. Such improvements 
could reduce the social vulnerability of these nearby communities even if those regions did not 
directly benefit from the initial investments.   
 
In this example, we will be using census tracts (indicated by FIPS codes) as the unit of observation 
within your county of choice. For subsequent spatial autocorrelation analysis to proceed, we need to 

determine which polygons (i.e., census tracts) neighbor each other. Start by assigning neighbors 
using the Queen’s contiguity method. The Queen’s contiguity method assigns neighbors by both 
edges and corners of polygons. The code below creates a data file assigning neighbors to every 
census tract in the county dataset you created (the example below is called “my_county”) with SVI 
values only within your county of interest.    
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neigh_queen <- poly2nb(my_county) #Make queen neighbors list for every census tract in 
#your county 
neigh_queen 
 
#Make queen neighbors plot. 
plot.nb(neigh_queen, st_centroid(st_geometry(my_county))) 
 
#Now run the same code but using the Rook configuration.  
 
#Calculate rook case neighbors. Note, this code includes “queen = F” to switch from a 
broader definition (Queen’s, considers neighbors that share both an edge and a corner) to 
a stricter one (Rook’s, considers neighbors that share just an edge). 
neigh_rook <- poly2nb(my_county, queen = F) 
neigh_rook 
 
#Visually compare queen versus rook contiguity by running the code below. 
 
#rook 
plot.nb(neigh_queen, st_centroid(st_geometry(my_county))) 
#queen 
plot.nb(neigh_rook, st_centroid(st_geometry(my_county))) 
 

After running the code above, a map plotting the relationship between neighboring counties based on 
your selected contiguity method will be generated in your R Studio viewer. Below is an example of 
this plot using queen and rook contiguity, respectively. 
 

   Queen’s Contiguity         Rook Contiguity 
 
 
 
 
 
 
 
 
 
 
 
Examine the plots you have created with the two contiguity methods. Describe the visual differences, 
if any, you see between two plots. Similarities? What do you hypothesize may explain these 
differences/similarities?  
 
Note: Depending on the county, the contiguity plots could be more similar or different compared to the 
example of Fulton County, GA. 
 
 

Part 3: Assessing for spatial autocorrelation between neighbors 
 
To test for spatial autocorrelation, we will use the Moran's I statistic. This statistical test can be used 
globally, with a single test statistic that describes autocorrelation over the entire map, or locally such 
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that there is a test statistic for each location. For more on global and local spatial autocorrelation, 
please see the references at the end of this document.  
 
We will also be using weights for neighbors because geographies that are near each other are often 
more similar than geographies that are not near to each other. Weights help us consider the similarity 
or dissimilarity between neighbors. In this exercise, weights between a pair of census tracts equal 
one if the two census tracts are neighbors and zero otherwise. 
 
Use the code below to convert the neighbor data to a listw object. This will be used to determine how 
neighbors will be weighted in the statistical model. For this example, use the queen contiguity method 
from above with the neigh_queen variable. 
 
 
listw <- nb2listw(neigh_queen, zero.policy = TRUE) 
listw 

 
Run the Moran's I test of spatial autocorrelation.  
The value for the correlation will be between -1 and 1 similar to correlation coefficients that you may 
have been introduced to in other math and statistical courses.  

• A value of 1 indicates perfect positive spatial autocorrelation (similar values are near each 
other). 

• A value of -1 indicates perfect negative spatial autocorrelation (dissimilar values are near each 
other).  

• A value of 0 indicates no spatial autocorrelation (no observed pattern). 
 
Use the code below to generate a test of global spatial autocorrelation for the overall SVI. 
 
moran.test(my_county$svi_overall, listw) 
 
#Use the code below to generate a test of LOCAL spatial autocorrelation for overall SVI 
using the local Moran’s I.  
#Note, we are recreating the queen weights list using the rgeoda function queen_weights. 
#As above, weights are one for a pair of census tracts that are neighbors and zero. 
 
queenw <- queen_weights(my_county) 
localmoran_svi <- local_moran(queenw, st_drop_geometry(my_county["svi_overall"])) 
 
#Use the code below to print the p-values indicating the statistical significance of the 
local autocorrelation. 
print(localmoran_svi) 
 

 
Test the significance of the relationships between the Local Moran statistic values using 
visualization. 
 

We will now leverage the object, “localmoran_svi”, created in the code above to create a visualization 
of spatial autocorrelation. With respect to spatial autocorrelation, we are interested in knowing: 
 

• Are census tracts with a high SVI near census tracts with a high SVI?  

• Are census tracts with a low SVI near census tracts with a low SVI?  

• Are census tracts with a low SVI near census tracts with a high SVI? 
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• Are these relationships (e.g., spatial dependencies and clustering) statistically significant?  
 
Use the code below to address these questions. Create the Local Indicator of Spatial Autocorrelation 
(LISA) test statistic cluster map to address these more specific questions. The code for this exercise 
is adapted from: https://uk.sagepub.com/en-gb/eur/an-introduction-to-r-for-spatial-analysis-and-
mapping/book241031 
 
#The code below assigns labels to different spatial autocorrelation categories (e.g., 
“High-High”, “Low-High”, etc.) These labels indicate which areas exhibit clustering 
(e.g., areas with high values surrounded by other high values or low values surrounded by 
high values, respectively). 
 

moran_lbls <- lisa_labels(localmoran_svi) 
 

#The code below assigns colors to each type of spatial cluster and maps the colors to 
correspond to the labels created with the code above. 
 

moran_colors <- setNames(lisa_colors(localmoran_svi), moran_lbls) 
 
#The code below prepares a new clustered dataset that will be used to create the maps. 
 

mycounty_clustered <- my_county %>% 
  st_drop_geometry() %>% 
  select(FIPS) %>% 
  mutate(cluster_num = lisa_clusters(localmoran_svi) + 1,  
         cluster = factor(moran_lbls[cluster_num], levels = moran_lbls)) %>% 
  right_join(my_county, by = "FIPS") %>% 
  st_as_sf() 
 
#The code below creates the visualization of the clusters with the ggplot package. This 
code will generate a map using the code above. 
 

ggplot(mycounty_clustered, aes(fill = cluster)) + 
  geom_sf(color = "white", size = 0) + 
  scale_fill_manual(values = moran_colors, na.value = "green") + 
 theme_dark()fill=colors,bty="n")  
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Interpret spatial autocorrelation results. 
Now that we have our results for the Moran's I LISA statistical test that used Queen's contiguity 
weights, interpret the findings based on the typology described below: 

• High-High regions indicate that counties with relatively high SVI values are surrounded by 
counties with relatively high SVI values. These regions are commonly described as "hot spots" 
and the regions are considered similar to one another (e.g., the individual county has a high 
SVI value, and the neighbors also have a high SVI value). 

• Low-Low regions indicate that counties with relatively low SVI values are surrounded by 
counties with relatively low SVI values. These regions are commonly described as "cold spots" 
and the regions are considered similar to one another (e.g., the individual county has a low SVI 
value, and the neighbors also have a low SVI value). 

• Low-High/High-Low regions: Low-high regions indicate that counties with relatively low SVI 
values are surrounded by counties with relatively high SVI values. High-Low regions indicate 
that counties with relatively high SVI values are surrounded by counties with relatively low SVI 
values. These Low-High and High-Low regions are commonly described as "spatial outliers" 
and the regions are considered opposite to one another (e.g., the individual county has a low 
SVI value, but the neighbors have high SVI). 

• Non-significant regions indicate that there is no statistically significant spatial clustering of 
high and low LISA levels.This does not indicate there is no heterogeneity of SVI values across 
these counties. This test just tells us that there is no clustering or spatial autocorrelation based 
on the contiguity method chosen in this analysis. 
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